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Abstract. The chaotic processes in time and space are investigated explicitly by means of solving the initial-boundary problem 
for the discrete kinetic equation. The Carleman model is studied. The physical interpretation of this kinetic system is presented. 
Numerical solutions show series of bifurcations when decreasing the Knudsen number. That leads to the period-doublings and 
then to the chaotic regimes with the positive senior Lyapunov exponential.  The spatial  oscillating profiles  with the average  
solutions which  differ  from the steady profiles  are observed.  The chaotic  character  of the  oscillations with  intermittence  is 
studied. This introduces a basic model for kinetic description of complicated physical processes. 
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INTRODUCTION

Until  now  the  problem of  description  of  unstable  flows  and  turbulence  is  actual  and  interesting.  The  kinetic 
description introduces new features which could be important especially for compressible flows.  The solutions on 
the basis of the Boltzmann equation are complex (see [1]) and unstable solutions have to be analyzed in details. One 
of the theoretical ways of investigation such problems is construction of the simple basic model for which one could 
study the character of instabilities and transition to a complex turbulent chaotic flows. For example the well-known 
Lorenz model provides the solutions which, strictly speaking, do not describe the real hydrodynamic flows, but 
contains some characteristics of real turbulece. Note that this model is spatially uniform. The other known model by 
Kuramoto-Tsuzuki (or Ginzburg-Landau) [2] is originated from the in the chemical reactions and diffusion. This 
equation is also a simple but in this case it is spatially nonuniform that allows us to reflect main features of real 
unstable turbulent phenomena. In contrast to the Burgers (see [3]) and Kuramoto-Tsuzuki equations, the Boltzmann 
kinetic equation contains the linear advective part and the nonlinear (quadratic nonlinearity) right-hand side with the 
collision integral.  Our purpose is  to  demonstrate  chaotic  processes  in time and space  by means of  solving the 
Carleman model when increasing the analog of  the Knudsen number.  This is  the first  example of  the Discrete 
Kinetic Equation (DKE) where chaotic regimes have been revealed. The Carleman model possesses some important 
properties of the kinetic equation. This model equation is a system of two nonlinear equations describing the transfer 
and the interaction of two types of particles. These equations can be treated as the special kind of the reversible 
chemical  system  as  well.  There  are  two  mathematical  incentives  to  investigate  this  model.  The  former  is 
nonintegrability of the system (see [4, 5]) which indicates on the existence of the positive Lyapunov exponentials 
and the latter is the theorem which states that stationary solutions can be linear unstable. Also, in distinction of the 
other  DKE,  this  stationary  solutions  can  be  easily  obtained  analytically.  The  initial-boundary  problem for  the 
Carleman model is studied numerically and a series of consecutive bifurcations is obtained with the decreasing the 
effective Knudsen number. The first bifurcation originates the limit cycle and the following bifurcations destroy it 
due to the appearance of the new oscillation modes. At last with the increase of the number of oscillations the 
transition to chaos is observed. The unstable solution including the nonpositive values for the distribution functions. 
So one can consider  this system as  a special  mathematical  model with the chaotic  features.  Nevertheless  these 
solutions possesses important features of the discrete nonlinear kinetic system and as one can expect for the more 
number of the discrete velocities (for the large number of the discrete velocities the approximation of the Boltzmann 
equation takes place) we can obtain the characteristic of the real turbulent flows. 

THE FORMULATION OF THE PROBLEM

The Carleman model is a system of two nonlinear equation describing the transfer and interaction of the two 
types of particles. We will treat these equations as the special kind of the reversible chemical system [6]. Also the 
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investigation of the Carleman equation is very attractive because space non-uniform stationary solutions can be 
obtained analytically. It has been proved in [7] that stationary solutions of the boundary problem for the Carleman 
equation can be linear unstable for a certain range of the outer parameters. The Carleman system (see [8]) in the 
ordinary dimensionless form is as follows 
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where Knε ≡  is Knudsen number. The boundary problem in dimensionless form is posed for the segment [0,1]:

(0, ) ( ),initu x u x= (0, ) ( ),initv x v x=  ( ,0) ,au t u= ( ,1) .bv t v=                           (2)

Note that it can be easily proved that the global equilibrium solution of the Carleman system, namely, for u=v is 
stable at least for u>0, v>0. The steady solution of the mentioned problem has the following form (see [7]):

       ( ) exp(2 / ) / 2,u x A cx cε= −  ( ) exp(2 / ) / 2.v x A cx cε= +   

The steady solution depends on two constant A and c. One can see that these value can be uniquely determined 
through the boundary conditions. Earlier in [7] it has been proved that the steady solution can be unstable. We will 
consider non-positive solutions of the Carleman system because they can be unstable. This implies that we ought to 
present the generalized physical interpretation for such unstable solutions. One can try to construct the autocatalytic 
reversible  spatial  non-uniform  chemical  process  which  will  be  described  by  the  Carleman  system.  From  the 
reversibility of the reaction we obtain that one needs to consider at least two components which can transmute each 
into another. The evolution of the each type of substance concentration is governed by the differential equation. 
Thus, the Carleman system comprising of the two equations can be adequate candidate for the description of the 
concentration oscillations in space and time. Consider the narrow cylindrical vessel filled with some liquid solution 
denoted by P. Due to the fact that the base of the cylinder is much smaller than its height we treat our vessel as one 
dimensional and use one spatial variable x%  along the height of the cylinder. The time variable is denoted by t% . All 
other  dimensional  variables  will  be also denoted with the upper wave line.  Suppose that  the left  border  of the 
cylinder is positively charged and right border is negatively charged. The left border emits the positive ions  R+  
which are moving to the right border with the constant velocity  Ω% . The right border emits the negative ions  S−  
which are moving to the left border with the same velocity modulus Ω% . Consider the reversible chemical reaction in 
the vessel

,P R S+ −+ →            .P S R− ++ →

Note that liquid solution P becomes the source of the electrons or holes. We do not require the electrical neutrality of 
the P. Its charge can vary in time due to the chemical reactions and then the conservation law for the total charge of 
the system consisting of  R+ ,  S− ,  P would be satisfied. We deal with the autocatalytic chemical reactions i.e. the 
velocity of the decay of the each type of substances is proportional to some function of the same type concentrations. 
Let us denote the concentrations of the number of ions for matters  ,R S+ −  by the  ( , ), ( , )U t x V t x% %% %% %  respectively. We 
consider  the autocatalytic  process  of the second order.  Then the velocity of the decay for  the concentration  R+  
(velocity of the concentration growth for the  S− ) is proportional to the  2

0( ( , ) )U t x uσ −% %% % % , and the velocity of the 

decay  for  the  concentration  S−  (velocity  of  the  concentration  growth  for  the  R+ )  is  proportional  to  the 
2

0( ( , ) )V t x vσ −% %% % % . Here 0u%  and 0v%  are the critical concentrations when the reaction of the transmutation stops. The 

value σ%  is the cross-section of the reaction. The dynamics of the concentrations is governed by the equations below
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We make the transformation of the variables  by setting  0( , ) ( , )u t x U t x u= −%% %% % % %  and  0( , ) ( , )v t x V t x v= −%% %% % % % .  The 

quantities  ( , )u t x%% %  and  ( , )v t x%% %  correspond  to  the  alternation  from the  critical  concentrations  and  can  be  either 

positive or non-positive. Let us denote the coordinates of the vessel’s boundary by the  1 2,x x% %  then dimensionless 

spatial variables are defined as follows:  /x x L= %% , where  2 1x xL = −% %%  is the characteristic macroscopic scale and the 

dimensionless  time  t  equals  to  /t LΩ% %% .  For  the  dimensionless  concentrations  we  have:  
0

,
a b

n u v= +% % %

0 0/ , /u u n v v n= =% % % % , Knudsen number is defined analogously to the ordinary kinetic theory, namely, 0/( )n Lε σ= Ω% %% % , 

where the characteristic cross-section σ%  can be assumed as unity and, values  ,a bu v% %  are the boundary conditions. 

For  the  Cauchy data  and  the  boundary  values  we obtain  0 0 0 0/ , / , / , /init init init init a a b bu u n v v n u u n v v n= = = =% % % % % % % % . 
Then in dimensionless variables we obtain problem (1)-(2). 

THE SCENARIO OF THE TRANSITION TO CHAOS IN THE CARLEMAN SYSTEM

We solve the unsteady system (1) numerically and study the unstable solutions with chaotic behavior. For the 
computations the second order (on time and space) scheme of the predictor-corrector type is used. The conditions of 
the numerical stability are valid, so we study instabilities originate due to physical processes itself.  In the case of 
stable steady solutions the solutions of the unsteady problem will be in the vicinity of the steady solutions. In the 
case of unstable steady solutions small errors for the simulation of the system (1) by the finite-difference scheme 
leads to break out the steady solutions. We use the 2l  measure of the deflections from the stationary solutions: 
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Here the index i numerates discrete points in the axis x, index m numerates discrete points in time, a subscript index 
(st) denotes the steady solution and N is the number of spatial points. For the parameter A>0 solutions are stable. The 
case  A=0 corresponds to spatially uniform solutions and this case is not considered.  For the case  A<0 at some 
conditions  a  complex  dynamics  and  the  transition  to  the  chaos  can  be  observed.  The  boundary conditions  are 
uniquely connected with the parameters A and c. We consider such boundary conditions that A=-0.4 and c=0.1. For 
Kn=0.75 the significant deflections from the steady solutions are observed. The trajectories in phase plane | |, | |u v  
tend to a point which is the attractor for this case.  With decreasing Knudsen number the oscillations about the 
attractor-point are observed. The amplitude of the oscillations increases when Knudsen number decreases and for 
Kn=0.63 the limit cycle appears (see Fig. 1). The radius of this cycle is larger for a smaller Knudsen number. For 
Kn=0.57 the first bifurcation of the period-doubling is observed (Fig. 2). 

Fig. 1. The origination of the limit cycle. 
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Fig. 2. The first period-doubling bifurcation. 

The following bifurcation of the period-doubling is obtained for Kn=0.562. The cycle of the period 4 is shown in 
Fig. 3 for Kn=0.561. 

Fig. 3. The second period-doubling bifurcation

For Kn=0.557 the transition to the chaos is observed (Fig. 4). We made 10 estimations of the senior Lyapunov 
exponential with aids of the Benettin algorithm [9] for the case showed in Fig. 4 and obtained that it lies in the 
interval (0.076, 0.086) with mean 0.081, the confidence level is 95%. With the decrease of Knudsen number the 
situation repeats. Again, between interval of Knudsen numbers (0.546, 0.549) the “window” of periodic regimes and 
period-doublings are observed and then when Knudsen number approaches to 0.545 the chaos appears. For Knudsen 
number equals to 0.52 we also estimated the senior Lyapunov exponential, it lies in the interval (0.207, 0.269) with 
the mean 0.238, the confidence level is 95%. The regular “windows” are observed. The intermittence is shown in 
Fig. 5a). 

Fig. 4. Chaotic regime. 

4



For  confirming  the  chaotic  properties  of  the  solutions  we  compare  two  solutions  for   the  different  initial 
conditions Fig. 5b). It is illustrated by the summary characteristic | | | | .normS u v= +  In Fig. 5b) the developments of 
the solutions with the small initial differences (0.01) in the steady solutions are shown. Evolution in time of the sum 
of l2   norms u and v at A=-0.4, C=0.1 for Kn=0.52 for two close initial conditions. One can see that for the initial 
stage of the process the differences of the solutions are very small but then the differences become large. 

a)                                                                            b)

Fig. 5. Intermittency in time (a) and evolution in time of the sum of l2  norms u and v at A=-0.4, C=0.1, Kn=0.52 for 
two close initial conditions (b). 

The special attention is paid to the spatio-temporal behavior of the quantities under consideration. In Fig. 6 the 
complicated behavior  of  trajectories  in  phase  space  of  two values  under consideration  u and  v is  observed  for 
different spatial points in the interval [0, 1] and for the Knudsen number Kn=0.52 (A=-0.4, C=0.1). Snapshots for the 
values (u(t,x),v(t,x)) are depicted in Fig. 7. 

Fig. 6. Behavior of solutions u(t) and v(t) at the fixed values A= -0.4, C=0.1 for different spatial points.  
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Fig. 7. Spatial profiles of u and v for different moments of time (presented by the number of the time steps) for the 
case at A=-0.4, C=0.1

CONCLUSION 

 In the present paper we give the outline of the different stochastic properties that can be obtained for the simplest 
case of the kinetic equation. We hope that  our main result, namely the existence of the cascade of bifurcations 
leading to the chaos and intermittence, i.e. the Feigenbaum scenario,  will be the stimulus  for the investigation  of 
the other types of discrete kinetic equations. The future work concerns in particular the increase of the number of the 
discrete velocities. Really, all DKE are non-integrable and the question is to obtain unstable stationary solutions and 
then to check chaotic behavior numerically.  If  the non-regular regimes exist then what scenario transition to the 
chaos will be observed? At the present moment these questions are opened. 
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